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Abstract: Today, higher output and increased productivity are two of the biggest reasons in justifying the use of
automatization. It is involved in each aspect of life and human activity. The same is true of science. In this paper
we consider generalized functional and multivalued dependencies, that is, vague functional and vague multivalued
dependencies. We consider both types as fuzzy formulas. We provide very strict proof of the equivalence: any
two-element vague relation instance on given scheme (which satisfies some set of vague functional and vague mul-
tivalued dependencies) satisfies given vague functional or vague multivalued dependency if and only if the joined
fuzzy formula is a logical consequence of the corresponding set of fuzzy formulas. This result represents natural
continuation and a generalization of our recent study where we were particularly interested in vague functional
dependencies. The key role of such results is to encourage automatically checking if some vague dependency
(functional or multivalued) follows from some set of vague dependencies (functional and multivalued). An exam-
ple which includes both kinds of vague dependencies is also given.
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1 Introduction
Let V be a vague set in U , where U is some universe
of discourse. We have,

V = {〈u, [tV (u) , 1− fV (u)]〉 : u ∈ U} ,

where tV , fV : U → [0, 1] are some functions such
that tV (u) + fV (u) ≤ 1 for all u ∈ U .

The interval [tV (u) , 1− fV (u)] ⊆ [0, 1] repre-
sents a vague value associated to u ∈ U .

Obviously, if tV (u) = 1 − fV (u) ∈ (0, 1), the
vague value [tV (u) , 1− fV (u)] becomes the fuzzy
value tV (u). In particular, [tV (u) , 1− fV (u)] be-
comes the crisp value 1 if tV (u) = 1 − fV (u) = 1.
Finally, if tV (u) = 1 − fV (u) = 0, then we assume
that u is not an element of the vague set V .

Let R (A1, A2, ..., An) be a relation scheme on
domains U1, U2,..., Un, where Ai is an attribute on
the universe of discourse Ui, i ∈ {1, 2, ..., n} =
I . Suppose that V (Ui) is the family of all vague
sets in Ui, i ∈ I . A vague relation instance r on
R (A1, A2, ..., An) is a subset of the cross product

V (U1)× V (U2)× ...× V (Un) .

Suppose that

t [Ai] =
{
〈ui, atui〉 : ui ∈ Ui

}
,

for all i ∈ I , and all tuples
t = (t [A1] , t [A2] , ..., t [An]) ∈ r, where r is some
fuzzy relation instance on R (A1, A2, ..., An). More
precisely, suppose that atui ∈ [0, 1] for all ui ∈ Ui, i
∈ I , and all t ∈ r, where atui is the membership value
of the element ui ∈ Ui to the fuzzy set t [Ai]. The
value t [Ai] of the attribute Ai on the tuple t may be
represented as

t [Ai] =
{
〈ui,

[
atui , a

t
ui

]
〉 : ui ∈ Ui

}
.

Hence, the fuzzy relation instance r on
R (A1, A2, ..., An) may be represented as a vague re-
lation instance on R (A1, A2, ..., An).

Similarly, if

t [Ai] =
{
uti
}

for all i ∈ I , and all tuples t ∈ r, where uti is some
element in Ui, and r is some relation instance on
R (A1, A2, ..., An), then, we may write

t [Ai] =〈uti, [1, 1]〉∪{
〈ui, [0, 0]〉 : ui ∈ Ui \

{
uti
}}

.

Therefore, the relation instance r on
R (A1, A2, ..., An) may also be represented as a vague
relation instance on R (A1, A2, ..., An).
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The discussion given above, shows that the vague
relational concept generalizes in a natural way both,
the classical relational concept as well as the fuzzy
relational concept.

For the basic relational concepts, we refer to [19]
(see also, [13], [4], [34]).

In [17], we applied the similarity measures de-
fined as follows (see also, [21], [8]-[18], [20], [31],
[14]).

Let x = [a, 1− b] ⊆ [0, 1] and y = [c, 1− d] ⊆
[0, 1] be some vague values. It is not required these
values to be associated to the elements of the same
universe of discourse.

The similarity measure SE (x, y) between the
vague values x and y is given by

SE (x, y)

=

√
1− |(a− c)− (b− d)|

2
·√

1− |(a− c) + (b− d)|.

It is known that SE (x, y) ∈ [0, 1], SE (x, y) =
SE (y, x), SE (x, y) = 1 if and only if x = y, and
SE (x, y) = 0 if and only if x = [0, 0], y = [1, 1] or x
= [0, 1], y = [q, q], 0 ≤ q ≤ 1.

If

A = {〈u, [tA (u) , 1− fA (u)]〉 : u ∈ U} ,
B = {〈u, [tB (u) , 1− fB (u)]〉 : u ∈ U}

are two vague sets in some universe of discourse U ,
then, the similarity measure SE (A,B) between the
vague sets A and B is introduced accordingly.

It is easily deduced that SE (A,B) ∈ [0, 1],
SE (A,B) = SE (B,A), SE (A,B) = 1 if and
only if A = B, and SE (A,B) = 0 if and only if
[tA (u) , 1− fA (u)] = [0, 0], [tB (u) , 1− fB (u)] =
[1, 1] for all u ∈ U or [tA (u) , 1− fA (u)] = [0, 1],
[tB (u) , 1− fB (u)] = [q, q], for all u ∈ U , where 0
≤ q ≤ 1.

The equality A = B means that A ⊆ B and B ⊆
A, where A is contained in B, i.e., A ⊆ B holds true,
if and only if tA (u) ≤ tB (u) and 1 − fA (u) ≤ 1 −
fB (u) for all u ∈ U .

So, A = B if and only if tA (u) = tB (u), fA (u)
= fB (u) for all u ∈ U .

Finally, if R (A1, A2, ..., An) is a relation scheme
on domains U1, U2,..., Un, where Ai is an attribute
on the universe of discourse Ui, i ∈ I , r is a vague
relation instance on R (A1, A2, ..., An), t1 and t2 are
any two tuples in r, and X ⊆ {A1, A2, ..., An} is a set
of attributes, then, the similarity measure SEX (t1, t2)
between the tuples t1 and t2 on the attribute set X is

given by

SEX (t1, t2) = min
A∈X
{SE (t1 [A] , t2 [A])} .

It is also easily deduced that SEX (t1, t2) ∈
[0, 1], SEX (t1, t2) = SEX (t2, t1), SEX (t1, t2) =
1 if and only if t1 [Ak] = t2 [Ak] for all Ak ∈ X
if and only if tt1[Ak] (u) = tt2[Ak] (u), ft1[Ak] (u) =
ft2[Ak] (u) for all u ∈ Uk, and all Ak ∈ X , and
SEX (t1, t2) = 0 if and only if there exists Ak
∈ X such that

[
tt1[Ak] (u) , 1− ft1[Ak] (u)

]
= [0, 0],[

tt2[Ak] (u) , 1− ft2[Ak] (u)
]
= [1, 1] for all u ∈ Uk or[

tt1[Ak] (u) , 1− ft1[Ak] (u)
]
= [0, 1],[

tt2[Ak] (u) , 1− ft2[Ak] (u)
]
= [q, q] for all u ∈ Uk,

where 0 ≤ q ≤ 1.
In [17], we have proved the assertions:
1) SEY (t1, t2) ≥ SEX (t1, t2) for t1, t2 in r, if

Y ⊆ X ⊆ {A1, A2, ..., An},
2) SEX (t1, t2)≥ θ if SE (t1 [A] , t2 [A])≥ θ for

all A ∈ X ,
3) SEX (t1, t2)≥ θ and SEX (t2, t3)≥ θ do not

necessarily imply that SEX (t1, t3) ≥ θ, where t1, t2
and t3 are some mutually distinct tuples in r.

In this paper we introduce the similarity measures
in the following way.

Let R (A1, A2, ..., An) be a relation scheme on
domains U1, U2,..., Un, where Ai is an attribute on
the universe of discourse Ui, i ∈ I .

Denote by V ag (Ui) the set of all vague values
associated to the elements ui ∈ Ui, i ∈ I .

A similarity measure on V ag (Ui) is
a mapping SEi : V ag (Ui) × V ag (Ui)
→ [0, 1], such that SEi (x, x) = 1,
SEi (x, y) = SEi (y, x), and SEi (x, z) ≥
max

y∈V ag(Ui)
(min (SEi (x, y) , SEi (y, z))) for all x, y,

z ∈ V ag (Ui).
Suppose that SEi is a similarity measure on

V ag (Ui), i ∈ I .
Let

Ai = {〈u, [tAi (u) , 1− fAi (u)]〉 : u ∈ Ui}
=
{
aiu : u ∈ Ui

}
,

Bi = {〈u, [tBi (u) , 1− fBi (u)]〉 : u ∈ Ui}
=
{
biu : u ∈ Ui

}
be two vague sets in Ui.

The similarity measure SE (Ai, Bi) between the
vague sets Ai and Bi is given by

SE (Ai, Bi)
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=min

{
min
aiu∈Ai

{
max
biu∈Bi

{
SEi

(
[tAi (u) , 1− fAi (u)] ,

[tBi (u) , 1− fBi (u)]
)}}

,

min
biu∈Bi

{
max
aiu∈Ai

{
SEi

(
[tBi (u) , 1− fBi (u)] ,

[tAi (u) , 1− fAi (u)]
)}}}

.

Now, if r is a vague relation instance on
R (A1, A2, ..., An), t1 and t2 are any two tuples in r,
and X is a subset of {A1, A2, ..., An}, then, the simi-
larity measure SEX (t1, t2) between the tuples t1 and
t2 on the attribute set X has the same form as before,
i.e.,

SEX (t1, t2) = min
A∈X
{SE (t1 [A] , t2 [A])} .

Note that the assertions 1) and 2) remain valid if
we take them with respect to new similarity measures.
Namely, it is obvious that the proofs of these asser-
tions do not depend on the choice of function SE :
V (Ui) × V (Ui)→ [0, 1] (see, [17]).

The assertion 3), however, does not hold any-
more. In particular, the following assertion holds true.

Lemma 1. Let R (A1, A2, ..., An) be a relation
scheme on domains U1, U2,..., Un, where Ai is an at-
tribute on the universe of discourse Ui, i ∈ I . Let r
be a vague relation instance on R (A1, A2, ..., An). If
SEX (ti, tj) ≥ θ and SEX (tj , tk) ≥ θ, where ti, tj
and tk are any three tuples in r, and X is a subset of
{A1, A2, ..., An}, then SEX (ti, tk) ≥ θ.

2 Vague multivalued dependencies
Let R (A1, A2, ..., An) be a relation scheme on do-
mains U1, U2,..., Un, where Ai is an attribute on the
universe of discourse Ui, i ∈ I . Suppose that r is a
relation instance on R (A1, A2, ..., An). Furthermore,
let X and Y be subsets of {A1, A2, ..., An}, and Z =
{A1, A2, ..., An} \ (X ∪ Y ).

Relation instance r is said to satisfy the multival-
ued dependency X →→ Y , if for every pair of tuples
t1 and t2 in r, t1 [X] = t2 [X] implies that there ex-
ists a tuple t3 in r, such that t3 [X] = t1 [X], t3 [Y ] =
t1 [Y ], and t3 [Z] = t2 [Z].

Note the following facts:
Multivalued dependencies are introduced by Fa-

gin [12],

t1 [X] = t2 [X] means that t1 [A] = t2 [A] for all
A ∈ X ,

t [Ai] ∈ Ui for all i ∈ I , and all t ∈ r,
there exists the identity relation ij : Uj × Uj →

{0, 1}, j ∈ I , such that ij (tk [Aj ] , tl [Aj ]) = 1 if and
only if tk [Aj ] = tl [Aj ], and ij (tk [Aj ] , tl [Aj ]) = 0
if and only if tk [Aj ] 6= tl [Aj ], where tk, tl ∈ r.

If we put ∅ 6= t [Ai] ⊆ Ui for all i ∈ I , and all t ∈
r, then the relation instance r becomes a fuzzy relation
instance on R (A1, A2, ..., An). In this setting we are
able to determine how similar (or how conformant)
t1 [X] and t2 [X] are. More precisely, we calculate
the conformance ϕ (X [t1, t2]) of the attribute set X
on tuples t1 and t2 as

ϕ (X [t1, t2]) = min
Ak∈X

{ϕ (Ak [t1, t2])} ,

where the conformance ϕ (Ak [t1, t2]) of the attribute
Ak on tuples t1 and t2 is given by

ϕ (Ak [t1, t2])

=min

{
min

x∈t1[Ak]

{
max

y∈t2[Ak]
{sk (x, y)}

}
,

min
x∈t2[Ak]

{
max

y∈t1[Ak]
{sk (x, y)}

}}
.

Here, sk : Uk × Uk → [0, 1] is a similarity relation on
Uk, k ∈ I , i.e., sk (x, x) = 1, sk (x, y) = sk (y, x), and
sk (x, z) ≥ max

y∈Uk
(min (sk (x, y) , sk (y, z))) for all x,

y, z ∈ Uk.
For the similarity-based fuzzy relational database

approach, see, [5]-[7].
Now, it would be natural to state that some fuzzy

relation instance r on R (A1, A2, ..., An) satisfies the
fuzzy multivalued dependency X →→F Y , if for ev-
ery pair of tuples t1 and t2 in r, there exists a tuple t3
in r, such that

ϕ (X [t3, t1]) ≥ϕ (X [t1, t2]) ,

ϕ (Y [t3, t1]) ≥ϕ (X [t1, t2]) ,

ϕ (Z [t3, t2]) ≥ϕ (X [t1, t2]) .

(1)

However, it is not so hard to select both, a
fuzzy relation instance r on R (A1, A2, ..., An), and
a fuzzy multivalued dependency X →→F Y , X , Y
⊆ {A1, A2, ..., An}, such that r satisfies X →→F

Y in reality, and X →→F Y makes perfectly sense
by itself, but there are tuples t1 and t2 in r, such
that (1) fails for every t3 in r. In other words, the
scenario where some of the elements ϕ (X [t3, t1]),
ϕ (Y [t3, t1]) and ϕ (Z [t3, t2]) are slightly smaller
than ϕ (X [t1, t2]) for all t3 ∈ r, may occur. There-
fore, the condition (1) is not adequate for determining
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if some fuzzy relation instance satisfies some fuzzy
multivalued dependency. In particular, if (1) holds
true, the instance r satisfies X →→F Y . Otherwise,
r may or may not satisfy X →→F Y .

Note that several authors, including Tripathy-
Saxena [33] and Nakata [26], have been taken at-
tempts in order to express the fuzzy multivalued de-
pendencies in various fuzzy relational database mod-
els.

Sozat and Yazici [30], adapted (1) in the follow-
ing way.

Let R (A1, A2, ..., An) be a relation scheme on
domains U1, U2,..., Un, where Ai is an attribute on
the universe of discourse Ui, i ∈ I . Suppose that r is
a fuzzy relation instance on R (A1, A2, ..., An). Fur-
thermore, letX and Y be subsets of {A1, A2, ..., An},
Z = {A1, A2, ..., An} \ (X ∪ Y ), and θ ∈ [0, 1].
Fuzzy relation instance r is said to satisfy the fuzzy
multivalued dependency X → θ−→F Y , if for every pair
of tuples t1 and t2 in r, there exists a tuple t3 in r,
such that

ϕ (X [t3, t1]) ≥min (θ, ϕ (X [t1, t2])) ,

ϕ (Y [t3, t1]) ≥min (θ, ϕ (X [t1, t2])) ,

ϕ (Z [t3, t2]) ≥min (θ, ϕ (X [t1, t2])) .

(2)

Thus, if it happens that for some t
′
1 and t

′
2 in r,

some of the elements ϕ
(
X
[
t3, t

′
1

])
, ϕ
(
Y
[
t3, t

′
1

])
and ϕ

(
Z
[
t3, t

′
2

])
are smaller than ϕ

(
X
[
t
′
1, t

′
2

])
,

and the elements in{
ϕ
(
X
[
t3, t

′
1

])
, ϕ
(
Y
[
t3, t

′
1

])
, ϕ
(
Z
[
t3, t

′
2

])}
that are smaller than ϕ

(
X
[
t
′
1, t

′
2

])
are larger than

θ for all t3 ∈ r, then, the condition (2) will be ful-
filled, so the instance r will satisfy X → θ−→F Y (as-
suming that (2) is fulfilled for (t1, t2) ∈ r × r, (t1, t2)
6=
(
t
′
1, t

′
2

)
).

The value θ ∈ [0, 1] that appears in the notationX

→ θ−→F Y is called the linguistic strength of the fuzzy
multivalued dependency. If θ = 1, the fuzzy multival-
ued dependency X → θ−→F Y becomes X →→F Y .

Now, reasoning as in the fuzzy case, we
first state that some vague relation instance r on
R (A1, A2, ..., An) satisfies the vague multivalued de-
pendency X →→V Y , if for every pair of tuples t1
and t2 in r, there exists a tuple t3 in r, such that

SEX (t3, t1) ≥SEX (t1, t2) ,

SEY (t3, t1) ≥SEX (t1, t2) ,

SEZ (t3, t2) ≥SEX (t1, t2) .

(3)

Then, we adapt (3) to the following form.
Let R (A1, A2, ..., An) be a relation scheme on

domains U1, U2,..., Un, where Ai is an attribute on
the universe of discourse Ui, i ∈ I . Suppose that r is
a vague relation instance on R (A1, A2, ..., An). Fur-
thermore, letX and Y be subsets of {A1, A2, ..., An},
Z = {A1, A2, ..., An} \ (X ∪ Y ), and θ ∈ [0, 1].
Vague relation instance r is said to satisfy the vague
multivalued dependency X → θ−→V Y , if for every pair
of tuples t1 and t2 in r, there exists a tuple t3 in r,
such that

SEX (t3, t1) ≥min (θ, SEX (t1, t2)) ,

SEY (t3, t1) ≥min (θ, SEX (t1, t2)) ,

SEZ (t3, t2) ≥min (θ, SEX (t1, t2)) .

If θ = 1, the vague multivalued dependency X

→ θ−→V Y becomes X →→V Y .
For yet another definition of vague multivalued

dependency, called α-vague multivalued dependency,
see [25].

Note that by [17], r satisfies the vague functional
dependency X θ−→V Y , if for every pair of tuples t1
and t2 in r,

SEY (t1, t2) ≥ min (θ, SEX (t1, t2)) .

X
θ−→V Y becomes X →V Y if θ = 1.

3 Soundness of inference rules for
vague multivalued dependencies

The following rules are the inference rules for vague
multivalued dependencies (VMVDs).

VM1 Inclusive rule for VMVDs: If X → θ1−→V

Y holds, and θ1 ≥ θ2, then X → θ2−→V Y holds.

VM2 Complementation rule for VMVDs: If X
→ θ−→V Y holds, then X → θ−→V Q holds, where
Q = {A1, A2, ..., An} \ (X ∪ Y ).

VM3 Augmentation rule for VMVDs: If X

→ θ−→V Y holds, andW ⊇Z, thenW ∪X→ θ−→V

Y ∪ Z also holds.

VM4 Transitivity rule for VMVDs: IfX→ θ1−→V

Y and Y → θ2−→V Z hold true, then X
min(θ1,θ2)→→ V

Z \ Y holds true.

VM5 Replication rule: If X θ−→V Y holds, then
X → θ−→V Y holds.
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VM6 Coalescence rule for VFDs and VMVDs:
If X → θ1−→V Y holds, Z ⊆ Y , and for some W
disjoint from Y , we have that W θ2−→V Z holds

true, then X
min(θ1,θ2)→ V Z also holds true.

In [17], we listed the inference rules for vague
functional dependencies. There, we proved that the
rules are sound, and that the set of these rules, i.e., the
set {V F1, V F2, V F3, V F4} is complete set. Ad-
ditional inference rules (labeled as V F5, V F6 and
V F7) are also proved to be sound.

Since the proofs of the corresponding theorems
in [17] do not depend on the choice of similarity mea-
sures between vague values and vagues sets, these the-
orems remain valid in the present setting, i.e., for the
choice: SEi, i ∈ I , SE, and SEX .

Theorem 2. The inference rules: VM1, VM2, VM3,
VM4, VM5 and VM6 are sound.

4 Soundness of additional inference
rules for vague multivalued depen-
dencies

The following inference rules are additional inference
rules for vague multivalued dependencies.

VM7 Union rule for VMVDs: If X → θ1−→V Y

and X → θ2−→V Z hold true, then X
min(θ1,θ2)→→ V Y

∪ Z holds true.

VM8 Pseudo-transitivity rule for VMVDs: If X
→ θ1−→V Y and W ∪ Y → θ2−→V Z hold true, then

W ∪X min(θ1,θ2)→→ V Z \ (W ∪ Y ) holds also true.

VM9 Decomposition rule for VMVDs: If X
→ θ1−→V Y and X → θ2−→V Z hold true, then X
min(θ1,θ2)→→ V Y ∩ Z, X

min(θ1,θ2)→→ V Y \ Z, and X
min(θ1,θ2)→→ V Z \ Y hold also true.

VM10 Mixed pseudo-transitivity rule: If X
→ θ1−→V Y and X ∪ Y θ2−→V Z hold true, then X
min(θ1,θ2)→ V Z \ Y holds true.

Theorem 3. The inference rules: VM7, VM8, VM9
and VM10 are sound.

5 Main result
For various definitions of similarity measures, see,
[21], [8], [9], [18] and [20].

For various definitions of vague functional and
vague multivalued dependencies, see, [21], [24], [35]
and [25].

The most important classes of fuzzy implica-
tions are: S-implications, R-implications and QL-
implications.

For precise definitions and description of S-, R-,
QL-implications, as well as for the definitions of var-
ious additional fuzzy implications, see, [29] and [3].

In this paper we use the following operators:

TM (x, y) =min {x, y} ,
SM (x, y) =max {x, y} ,
IL (x, y) =min {1− x+ y, 1} ,

where TM is the minimum t-norm, SM is the maxi-
mum t-co-norm, and IL is the Lukasiewicz fuzzy im-
plication.

The Lukasiewics fuzzy implication is an S-, an
R-, and aQL-fuzzy implication at the same time (see,
[29], [3]).

Some of the works that deal with S-,R-, andQL-
implications are the following ones: [1], [2], [22],
[32], [28], [23], [27].

Let r = {t1, t2} be a two-element vague relation
instance on R (A1, A2, ..., An), and β ∈ [0, 1] be a
number.

We say that ir,β is a valuation joined to r and β if
ir,β : {A1, A2, ..., An} → [0, 1], and

ir,β (Ak) >
1

2
if SE (t1 [Ak] , t2 [Ak]) ≥ β,

ir,β (Ak) ≤
1

2
if SE (t1 [Ak] , t2 [Ak]) < β,

k ∈ {1, 2, ..., n}.
Note that the fact that ir,β (Ak) ∈ [0, 1] for k

∈ {1, 2, ..., n} yields that the attributes Ak, k ∈
{1, 2, ..., n} are actually fuzzy formulas with respect
to ir,β .

Through the rest of the paper we shall assume that
each time some r = {t1, t2} and some β ∈ [0, 1] are
given, the fuzzy formula

(∧A∈XA)⇒ (∧B∈YB)

resp.

(∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC))
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with respect to ir,β is joined to X
θ→V Y resp. X

θ→→V Y , where X
θ→V Y resp. X

θ→→V Y is
a vague functional resp. vague multivalued depen-
dency on {A1, A2, ..., An}, and Z = {A1, A2, ..., An}
\ (X ∪ Y ).

Theorem 4. Let R (A1, A2, ..., An) be a relation
scheme on domains U1, U2,..., Un, where Ai is an
attribute on the universe of discourse Ui, i ∈ I . Let
C be some set of vague functional and vague multi-
valued dependencies on {A1, A2, ..., An}. Suppose

that X θ→V Y resp. X
θ→→V Y is some vague

functional resp. vague multivalued dependency on
{A1, A2, ..., An}. The following two conditions are
equivalent:

(a) Any two-element vague relation instance on
R (A1, A2, ..., An) which satisfies all dependencies in

C, satisfies the dependency X θ→V Y resp. X θ→→V

Y .
(b) Let r be any two-element vague relation in-

stance on R (A1, A2, ..., An), and β ∈ [0, 1]. Suppose
that ir,β (K) > 1

2 for all K ∈ C ′
, where C

′
is the set

of fuzzy formulas with respect to ir,β , joined to the el-
ements of C. Then,

ir,β ((∧A∈XA)⇒ (∧B∈YB)) >
1

2

resp.

ir,β ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC))) >
1

2
,

where Z = {A1, A2, ..., An} \ (X ∪ Y ).

Proof. Suppose that U1 = U2 = ... = Un = {u} = U .
Put

θ
′
= min {θ, θC} ,

where

θC = min
K1θ→V L∈C,K 1θ→→V L∈C

{1θ} .

We may assume that θ
′
< 1.

Namely, if θ
′
= 1, then θ = 1 and θC = 1

This means that θ = 1, and 1θ = 1 for all K 1θ→V

L ∈ C and all K 1θ→→V L ∈ C
This case, however, is not interesting.
Choose some θ

′′
< θ

′
.

Put

V1 = {〈u, [tV1 (u) , 1− fV1 (u)]〉 : u ∈ U}
= {〈u, [tV1 (u) , 1− fV1 (u)]〉} = {〈u, a〉} ,

V2 = {〈u, [tV2 (u) , 1− fV2 (u)]〉 : u ∈ U}
= {〈u, [tV2 (u) , 1− fV2 (u)]〉} = {〈u, b〉}

to be two vague sets in U , such that

SEU (a, b) = θ
′′

where SEU : V ag (U) × V ag (U)→ [0, 1], is a sim-
ilarity measure on V ag (U) = {a, b}.

It follows that

SE (V1, V2)

=min
{

min
〈u,a〉∈V1

{
max

〈u,b〉∈V2

{
SEU

(
a, b
)}}

,

min
〈u,b〉∈V2

{
max

〈u,a〉∈V1

{
SEU

(
b, a
)}}}

=min
{
θ
′′
, θ

′′
}
= θ

′′
.

Similarly, SE (V1, V1) = SE (V2, V2) = 1.
Since V ag (U) = {a, b}, it follows that

SE (A,B)

=min
{

min
〈u,x〉∈A

{
max

〈u,y〉∈B

{
SEU

(
x, y
)}}

,

min
〈u,y〉∈B

{
max

〈u,x〉∈A

{
SEU

(
y, x
)}}}

≥min
{
θ
′′
, θ

′′
}
= θ

′′

for any two vague setsA= {〈u, x〉} andB = {〈u, y〉}
in U .

(a)⇒ (b) Suppose that (a) holds true.
Furthermore, suppose that (b) does not hold true.
Now, there is some two-element vague relation

instance r on R (A1, A2, ..., An), and β ∈ [0, 1], such
that

ir,β ((∧A∈KA)⇒ (∧B∈LB)) >
1

2
,

ir,β ((∧A∈KA)⇒ ((∧B∈LB) ∨ (∧C∈MC))) >
1

2
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for all

(∧A∈KA)⇒ (∧B∈LB) ∈ C ′
,

(∧A∈KA)⇒ ((∧B∈LB) ∨ (∧C∈MC)) ∈ C
′
,

M = {A1, A2, ..., An} \ (K ∪ L), and

ir,β ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2
resp.

ir,β ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC))) ≤
1

2
.

Put

W =

{
A ∈ {A1, A2, ..., An} : ir,β (A) >

1

2

}
.

Suppose that W = ∅.
Then, ir,β (A) ≤ 1

2 for all A ∈ {A1, A2, ..., An}.
Consequently,

ir,β (∧A∈MA)

=min {ir,β (A) : A ∈M} ≤ 1

2

for all M ⊆ {A1, A2, ..., An}.
Since

ir,β ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2
resp.

ir,β ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC))) ≤
1

2

it follows that

min {1− ir,β (∧A∈XA) + ir,β (∧B∈YB) , 1}

≤1

2
resp.

min
{
1− ir,β (∧A∈XA)+

max {ir,β (∧B∈YB) , ir,β (∧C∈ZC)} , 1
}

=min
{
1− ir,β (∧A∈XA)+

ir,β ((∧B∈YB) ∨ (∧C∈ZC)) , 1
}

≤1

2
.

If

min {1− ir,β (∧A∈XA) + ir,β (∧B∈YB) , 1} = 1

resp.

min
{
1− ir,β (∧A∈XA)+

max {ir,β (∧B∈YB) , ir,β (∧C∈ZC)} , 1
}
= 1,

then, 1 ≤ 1
2 . This is a contradiction.

Hence,

1

2
+ ir,β (∧B∈YB) ≤ ir,β (∧A∈XA)

resp.

1

2
+ max {ir,β (∧B∈YB) , ir,β (∧C∈ZC)}

≤ir,β (∧A∈XA) .

Since ir,β (∧B∈YB) ≥ 0 resp.

max {ir,β (∧B∈YB) , ir,β (∧C∈ZC)} ≥ 0,

it follows that ir,β (∧A∈XA) ≥ 1
2 .

This contradicts the fact that ir,β (∧A∈XA) ≤ 1
2 .

Therefore, W 6= ∅.
Suppose that W = {A1, A2, ..., An}.
It follows that ir,β (A) > 1

2 for all A ∈
{A1, A2, ..., An}.

Hence, ir,β (∧A∈MA) > 1
2 for all M ⊆

{A1, A2, ..., An}.
Since

ir,β ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2

resp.

ir,β ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC))) ≤
1

2
,

we have that

1

2
+ ir,β (∧B∈YB) ≤ ir,β (∧A∈XA)

resp.

1

2
+ max {ir,β (∧B∈YB) , ir,β (∧C∈ZC)}

≤ir,β (∧A∈XA) .
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Now, ir,β (∧B∈YB) > 1
2 resp.

max {ir,β (∧B∈YB) , ir,β (∧C∈ZC)} >
1

2
,

yields that ir,β (∧A∈XA) > 1.
This is a contradiction.
We conclude, W 6= {A1, A2, ..., An}.
Let r

′
=
{
t
′
, t

′′
}

be the vague relation instance
on R (A1, A2, ..., An) given by Table 1.

Table 1:
attributes of W other attributes

t
′

V1, V1, ..., V1 V1, V1, ..., V1
t
′′

V1, V1, ..., V1 V2, V2, ..., V2

We shall prove that r
′

satisfies K 1θ→V L resp. K
1θ→→V L if K 1θ→V L resp. K 1θ→→V L belongs to C,

and violates X θ→V Y resp. X θ→→V Y .
Let K 1θ→V L belongs to C.
Suppose that ir,β (∧A∈KA) ≤ 1

2 .
It follows that ir,β (A0) ≤ 1

2 for some A0 ∈K.
Therefore, A0 /∈W .
SinceA0 ∈K, we obtain that SEK

(
t
′
, t

′′
)
= θ

′′
.

By definition of r
′
, we have that SEM

(
t
′
, t

′′
)
≥

θ
′′

for all M ⊆ {A1, A2, ..., An}.
In particular, SEL

(
t
′
, t

′′
)
≥ θ′′ .

Consequently,

SEL

(
t
′
, t

′′
)
≥θ′′ = min

{
1θ, θ

′′
}

=min
{
1θ, SEK

(
t
′
, t

′′
)}

.

We conclude, r
′

satisfies K 1θ→V L.
Suppose that ir,β (∧A∈KA) > 1

2 .
Since

ir,β ((∧A∈KA)⇒ (∧B∈LB)) >
1

2
,

it follows that

min {1− ir,β (∧A∈KA) + ir,β (∧B∈LB) , 1} > 1

2
.

Suppose that ir,β (∧B∈LB) ≤ 1
2 .

We have,

1− ir,β (∧A∈KA) + ir,β (∧B∈LB)

<1− 1

2
+

1

2
= 1.

Thus,

min {1− ir,β (∧A∈KA) + ir,β (∧B∈LB) , 1}
=1− ir,β (∧A∈KA) + ir,β (∧B∈LB) .

We obtain,

1

2
+ ir,β (∧B∈LB) > ir,β (∧A∈KA) .

This inequality must always hold true.
Therefore, ir,β (∧A∈KA) < 1

2 .
This is a contradiction.
Hence, ir,β (∧B∈LB) > 1

2 .

This immediately implies that SEL
(
t
′
, t

′′
)
= 1.

Consequently,

SEL

(
t
′
, t

′′
)
= 1 ≥ min

{
1θ, SEK

(
t
′
, t

′′
)}

.

We conclude, r
′

satisfies K 1θ→V L.
Let K 1θ→→V L belongs to C.
Suppose that ir,β (∧A∈KA) ≤ 1

2 .

We obtain, SEK
(
t
′
, t

′′
)
= θ

′′
.

Now, there exists t3 ∈ r
′
, t3 = t

′
, such that

SEK

(
t3, t

′
)
=1 ≥ min

{
1θ, SEK

(
t
′
, t

′′
)}

,

SEL

(
t3, t

′
)
=1 ≥ min

{
1θ, SEK

(
t
′
, t

′′
)}

,

SEM

(
t3, t

′′
)
≥θ′′ = min

{
1θ, θ

′′
}

=min
{
1θ, SEK

(
t
′
, t

′′
)}

.

This means that r
′

satisfies K 1θ→→V L.
Suppose that ir,β (∧A∈KA) > 1

2 .
Since

ir,β ((∧A∈KA)⇒ ((∧B∈LB) ∨ (∧C∈MC))) >
1

2
,

we have that
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min
{
1− ir,β (∧A∈KA)+

max {ir,β (∧B∈LB) , ir,β (∧C∈MC)} , 1
}

>
1

2
.

Suppose that

max {ir,β (∧B∈LB) , ir,β (∧C∈MC)} ≤
1

2
.

We obtain,

1− ir,β (∧A∈KA)+
max {ir,β (∧B∈LB) , ir,β (∧C∈MC)}

<1− 1

2
+

1

2
= 1.

Hence,

min
{
1− ir,β (∧A∈KA)+

max {ir,β (∧B∈LB) , ir,β (∧C∈MC)} , 1
}

=1− ir,β (∧A∈KA)+
max {ir,β (∧B∈LB) , ir,β (∧C∈MC)} .

Thus,

1

2
+ max {ir,β (∧B∈LB) , ir,β (∧C∈MC)}

>ir,β (∧A∈KA) .

This inequality must always hold true. Conse-
quently,
ir,β (∧A∈KA) < 1

2 .
This is a contradiction.
We conclude,

max {ir,β (∧B∈LB) , ir,β (∧C∈MC)} >
1

2
.

This implies that ir,β (∧B∈LB) > 1
2 or

ir,β (∧C∈MC) >
1
2 .

Suppose that ir,β (∧B∈LB) > 1
2 .

Now, SEL
(
t
′
, t

′′
)
= 1.

Thus, there is t3 ∈ r
′
, t3 = t

′′
, such that

SEK

(
t3, t

′
)
=1 ≥ min

{
1θ, SEK

(
t
′
, t

′′
)}

,

SEL

(
t3, t

′
)
=1 ≥ min

{
1θ, SEK

(
t
′
, t

′′
)}

,

SEM

(
t3, t

′′
)
=1 ≥ min

{
1θ, SEK

(
t
′
, t

′′
)}

.

This means that r
′

satisfies K 1θ→→V L.
Note that SEK

(
t3, t

′
)
= 1 since ir,β (∧A∈KA)

> 1
2 .

Suppose that ir,β (∧C∈MC) >
1
2 .

In this case, SEM
(
t
′
, t

′′
)
= 1.

Thus, there is t3 ∈ r
′
, t3 = t

′
, such that

SEK

(
t3, t

′
)
=1 ≥ min

{
1θ, SEK

(
t
′
, t

′′
)}

,

SEL

(
t3, t

′
)
=1 ≥ min

{
1θ, SEK

(
t
′
, t

′′
)}

,

SEM

(
t3, t

′′
)
=1 ≥ min

{
1θ, SEK

(
t
′
, t

′′
)}

.

Therefore, r
′

satisfies K 1θ→→V L.
It remains to prove that r

′
violatesX θ→V Y resp.

X
θ→→V Y .
Suppose that

ir,β ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2
.

We obtain,

1

2
+ ir,β (∧B∈YB) ≤ ir,β (∧A∈XA) .

If ir,β (∧B∈YB) > 1
2 , then ir,β (∧A∈XA) > 1.

Hence, ir,β (∧B∈YB) ≤ 1
2 .

Since

1

2
+ ir,β (∧B∈YB) ≤ ir,β (∧A∈XA)

holds always true, it follows that ir,β (∧A∈XA) = 1.

Hence, SEY
(
t
′
, t

′′
)
= θ

′′
, SEX

(
t
′
, t

′′
)
= 1.

Now,

SEY

(
t
′
, t

′′
)
=θ

′′
< θ

′ ≤ θ

=min {θ, 1}

=min
{
θ, SEX

(
t
′
, t

′′
)}

.
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This means that r
′

violates X θ→V Y .
Suppose that

ir,β ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC))) ≤
1

2
.

It follows that,

1

2
+ max {ir,β (∧B∈YB) , ir,β (∧C∈ZC)}

≤ir,β (∧A∈XA) .

If

max {ir,β (∧B∈YB) , ir,β (∧C∈ZC)} >
1

2
,

then ir,β (∧A∈XA) > 1.
Therefore,

max {ir,β (∧B∈YB) , ir,β (∧C∈ZC)} ≤
1

2
.

Since

1

2
+ max {ir,β (∧B∈YB) , ir,β (∧C∈ZC)}

≤ir,β (∧A∈XA)

holds always true, it follows that ir,β (∧A∈XA) = 1.
Furthermore,

max {ir,β (∧B∈YB) , ir,β (∧C∈ZC)} ≤
1

2

yields that ir,β (∧B∈YB) ≤ 1
2 , ir,β (∧C∈ZC) ≤ 1

2 .

We obtain, SEX
(
t
′
, t

′′
)

= 1, SEY
(
t
′
, t

′′
)

=

θ
′′
,

SEZ

(
t
′
, t

′′
)
= θ

′′
.

If t3 ∈ r
′
, t3 = t

′
, then

SEX

(
t3, t

′
)
=1 ≥ min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEY

(
t3, t

′
)
=1 ≥ min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEZ

(
t3, t

′′
)
=θ

′′
< θ

′ ≤ θ

=min {θ, 1}

=min
{
θ, SEX

(
t
′
, t

′′
)}

.

If t3 ∈ r
′
, t3 = t

′′
, then

SEX

(
t3, t

′
)
=1 ≥ min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEY

(
t3, t

′
)
=θ

′′
< θ

′ ≤ θ

=min {θ, 1}

=min
{
θ, SEX

(
t
′
, t

′′
)}

,

SEZ

(
t3, t

′′
)
=1 ≥ min

{
θ, SEX

(
t
′
, t

′′
)}

.

This means that r
′

violates X θ→→V Y .
Hence, r

′
satisfies K 1θ→V L resp. K 1θ→→V L if

K 1θ→V L resp. K 1θ→→V L belongs to C, and violates
X

θ→V Y resp. X θ→→V Y .
This contradicts the fact that (a) holds true.
Hence, (b) holds true.
(b)⇒ (a) Suppose that (b) holds true.
Furthermore, suppose that (a) does not hold true.
Now, there is some two-element vague relation

instance r
′
=
{
t
′
, t

′′
}

on R (A1, A2, ..., An) which

satisfies all dependencies in C, and violates X θ→V Y

resp. X θ→→V Y .
Define

W =
{
A ∈ {A1, A2, ..., An} :

SE
(
t
′
[A] , t

′′
[A]
)
= 1
}
.

Suppose that W = ∅.
It follows that SE

(
t
′
[A] , t

′′
[A]
)
= θ

′′
for all A

∈ {A1, A2, ..., An}.
Consequently, SEM

(
t
′
, t

′′
)
= θ

′′
for all M ⊆

{A1, A2, ..., An}.
Suppose that r

′
violates X θ→V Y .

We obtain,

SEY

(
t
′
, t

′′
)
< min

{
θ, SEX

(
t
′
, t

′′
)}

,

i.e.,

θ
′′
< min

{
θ, θ

′′
}
= θ

′′
.

This is a contradiction.
Suppose that r

′
violates X θ→→V Y .
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It follows that the inequalities

SEX

(
t
′
, t

′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEY

(
t
′
, t

′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEZ

(
t
′
, t

′′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

don’t hold at the same time.
The first and the second inequality hold obviously

true. Hence,

SEZ

(
t
′
, t

′′
)
< min

{
θ, SEX

(
t
′
, t

′′
)}

,

i.e.,

θ
′′
< min

{
θ, θ

′′
}
= θ

′′
.

This is a contradiction.
We conclude, W 6= ∅.
Suppose that W = {A1, A2, ..., An}.
It follows that SE

(
t
′
[A] , t

′′
[A]
)
= 1 for all A

∈ {A1, A2, ..., An}.
Consequently, SEM

(
t
′
, t

′′
)
= 1 for all M ⊆

{A1, A2, ..., An}.
Suppose that r

′
violates X θ→V Y .

Then,

SEY

(
t
′
, t

′′
)
< min

{
θ, SEX

(
t
′
, t

′′
)}

,

i.e.,

1 < min {θ, 1} = θ.

This is a contradiction.
Suppose that r

′
violates X θ→→V Y .

Now, the inequalities

SEX

(
t
′
, t

′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEY

(
t
′
, t

′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEZ

(
t
′
, t

′′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

don’t hold at the same time.
Since the first and the second inequality hold true,

we obtain that

SEZ

(
t
′
, t

′′
)
< min

{
θ, SEX

(
t
′
, t

′′
)}

,

i.e.,

1 < min {θ, 1} = θ.

This is a contradiction.
We conclude, W 6= {A1, A2, ..., An}.
Since r

′
is a two-element vague relation instance

on R (A1, A2, ..., An), and 1 ∈ [0, 1] is a number, we
may define ir′ ,1.

We have,

ir′ ,1 (Ak) >
1

2
if SE

(
t
′
[Ak] , t

′′
[Ak]

)
≥ 1,

ir′ ,1 (Ak) ≤
1

2
if SE

(
t
′
[Ak] , t

′′
[Ak]

)
< 1,

k ∈ {1, 2, ..., n}, i.e.,

ir′ ,1 (Ak) >
1

2
if SE

(
t
′
[Ak] , t

′′
[Ak]

)
= 1,

ir′ ,1 (Ak) ≤
1

2
if SE

(
t
′
[Ak] , t

′′
[Ak]

)
= θ

′′
,

k ∈ {1, 2, ..., n}, i.e.,

ir′ ,1 (Ak) >
1

2
if Ak ∈W,

ir′ ,1 (Ak) ≤
1

2
if Ak /∈W,

k ∈ {1, 2, ..., n}.
Thus,

ir′ ,1 (A) >
1

2
if A ∈W,

ir′ ,1 (A) ≤
1

2
if A /∈W.

We shall prove that

ir′ ,1 ((∧A∈KA)⇒ (∧B∈LB)) >
1

2
,

ir′ ,1 ((∧A∈KA)⇒ ((∧B∈LB) ∨ (∧C∈MC))) >
1

2

for all (∧A∈KA)⇒ (∧B∈LB) ∈ C ′
, (∧A∈KA)⇒

((∧B∈LB) ∨ (∧C∈MC)) ∈ C
′
, where M =

{A1, A2, ..., An} \ (K ∪ L), and
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ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2

resp.

ir′ ,1 ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC))) >
1

2
.

Suppose that (∧A∈KA)⇒ (∧B∈LB) ∈ C ′
corre-

sponds to K 1θ→V L ∈ C.
Suppose that

ir′ ,1 ((∧A∈KA)⇒ (∧B∈LB)) ≤ 1

2
.

It follows that

1

2
+ ir′ ,1 (∧B∈LB) ≤ ir′ ,1 (∧A∈KA) .

Now, ir′ ,1 (∧B∈LB) ≤ 1
2 , ir′ ,1 (∧A∈KA) = 1.

Consequently, SEL
(
t
′
, t

′′
)
= θ

′′
, SEK

(
t
′
, t

′′
)

= 1.
Therefore,

SEL

(
t
′
, t

′′
)
=θ

′′
< θ

′ ≤1 θ

=min {1θ, 1}

=min
{
1θ, SEK

(
t
′
, t

′′
)}

.

This contradicts the fact that r
′

satisfiesK 1θ→V L.
Hence,

ir′ ,1 ((∧A∈KA)⇒ (∧B∈LB)) >
1

2
.

Suppose that (∧A∈KA)⇒
((∧B∈LB) ∨ (∧C∈MC)) ∈ C

′
corresponds to K

1θ→→V L ∈ C.
Suppose that

ir′ ,1 ((∧A∈KA)⇒ ((∧B∈LB) ∨ (∧B∈LB))) ≤ 1

2
.

It follows that

1

2
+ max

{
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧C∈MC)

}
≤ir′ ,1 (∧A∈KA) .

Now,

max
{
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧C∈MC)

}
≤ 1

2
,

ir′ ,1 (∧A∈KA) = 1, i.e., ir′ ,1 (∧B∈LB) ≤ 1
2 ,

ir′ ,1 (∧C∈MC) ≤ 1
2 , ir′ ,1 (∧A∈KA) = 1.

Consequently, SEL
(
t
′
, t

′′
)
= θ

′′
, SEM

(
t
′
, t

′′
)

= θ
′′
, SEK

(
t
′
, t

′′
)
= 1.

We have,

SEM

(
t
′
, t

′′
)
=θ

′′
< θ

′ ≤1 θ

=min {1θ, 1}

=min
{
1θ, SEK

(
t
′
, t

′′
)}

.

Hence, the third inequality of the inequalities

SEK

(
t
′
, t

′
)
≥min

{
1θ, SEK

(
t
′
, t

′′
)}

,

SEL

(
t
′
, t

′
)
≥min

{
1θ, SEK

(
t
′
, t

′′
)}

,

SEM

(
t
′
, t

′′
)
≥min

{
1θ, SEK

(
t
′
, t

′′
)}

is not satisfied.
Furthermore,

SEL

(
t
′
, t

′′
)
=θ

′′
< θ

′ ≤1 θ

=min {1θ, 1}

=min
{
1θ, SEK

(
t
′
, t

′′
)}

.

Therefore, the second inequality of the inequali-
ties

SEK

(
t
′′
, t

′
)
≥min

{
1θ, SEK

(
t
′
, t

′′
)}

,

SEL

(
t
′′
, t

′
)
≥min

{
1θ, SEK

(
t
′
, t

′′
)}

,

SEM

(
t
′′
, t

′′
)
≥min

{
1θ, SEK

(
t
′
, t

′′
)}
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is not satisfied.
This means that r

′
violates K 1θ→→V L.

This contradicts the fact that r
′

satisfies K 1θ→→V

L.
Hence,

ir′ ,1 ((∧A∈KA)⇒ ((∧B∈LB) ∨ (∧C∈MC))) >
1

2
.

It remains to prove that

ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2

resp.

ir′ ,1 ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧B∈ZC))) ≤
1

2
.

Suppose that

ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB)) >
1

2
.

Let ir′ ,1 (∧A∈XA) ≤
1
2 .

It follows that SEX
(
t
′
, t

′′
)
= θ

′′
.

Since SEM
(
t
′
, t

′′
)
≥ θ′′ for all M ⊆

{A1, A2, ..., An}, we obtain that

SEY

(
t
′
, t

′′
)
≥θ′′ = min

{
θ, θ

′′
}

=min
{
θ, SEX

(
t
′
, t

′′
)}

.

This contradicts the fact that r
′

violates X θ→V

Y .
Let ir′ ,1 (∧A∈XA) >

1
2 .

Since

ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB)) >
1

2
,

it follows that

min
{
1− ir′ ,1 (∧A∈XA) + ir′ ,1 (∧B∈YB) , 1

}
>
1

2
.

Suppose that ir′ ,1 (∧B∈YB) ≤ 1
2 .

We obtain,

1− ir′ ,1 (∧A∈XA) + ir′ ,1 (∧B∈YB)

<1− 1

2
+

1

2
= 1.

Hence,

min
{
1− ir′ ,1 (∧A∈XA) + ir′ ,1 (∧B∈YB) , 1

}
=1− ir′ ,1 (∧A∈XA) + ir′ ,1 (∧B∈YB) .

Thus,

1

2
+ ir′ ,1 (∧B∈YB) > ir′ ,1 (∧A∈XA) .

This inequality must hold always true.
Consequently, ir′ ,1 (∧A∈XA) <

1
2 .

This is a contradiction.
Therefore, ir′ ,1 (∧B∈YB)> 1

2 , i.e., SEY
(
t
′
, t

′′
)

= 1.
We obtain,

SEY

(
t
′
, t

′′
)
= 1 ≥ min

{
θ, SEX

(
t
′
, t

′′
)}

.

This contradicts the fact that r
′

violates X θ→V

Y .
We conclude,

ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2
.

Suppose that

ir′ ,1 ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC))) >
1

2
.

Let ir′ ,1 (∧A∈XA) ≤
1
2 .

It follows that SEX
(
t
′
, t

′′
)
= θ

′′
.

Since SEM
(
t
′
, t

′′
)
≥ θ′′ for all M ⊆

{A1, A2, ..., An}, we obtain that

SEZ

(
t
′
, t

′′
)
≥θ′′ = min

{
θ, θ

′′
}

=min
{
θ, SEX

(
t
′
, t

′′
)}

.
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Hence,

SEX

(
t
′
, t

′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEY

(
t
′
, t

′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEZ

(
t
′
, t

′′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

.

This contradicts the fact that r
′

violates X θ→→V

Y .
Let ir′ ,1 (∧A∈XA) >

1
2 .

Since

ir′ ,1 ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC))) >
1

2
,

it follows that

min
{
1− ir′ ,1 (∧A∈XA)+

max
{
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧C∈ZC)

}
, 1
}

>
1

2
.

Suppose that

max
{
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧C∈ZC)

}
≤ 1

2
.

We obtain,

1− ir′ ,1 (∧A∈XA)+

max
{
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧C∈ZC)

}
<1− 1

2
+

1

2
= 1.

Hence,

min
{
1− ir′ ,1 (∧A∈XA)+

max
{
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧C∈ZC)

}
, 1
}

=1− ir′ ,1 (∧A∈XA)+

max
{
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧C∈ZC)

}
.

Thus,

1

2
+ max

{
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧C∈ZC)

}
>ir′ ,1 (∧A∈XA) .

Since this inequality holds always true, we obtain
that ir′ ,1 (∧A∈XA) <

1
2 .

This is a contradiction.
Therefore,

max
{
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧C∈ZC)

}
>

1

2
.

It follows that ir′ ,1 (∧B∈YB) > 1
2 or

ir′ ,1 (∧C∈ZC) >
1
2 .

Thus, SEY
(
t
′
, t

′′
)
= 1 or SEZ

(
t
′
, t

′′
)
= 1.

Since ir′ ,1 (∧A∈XA) >
1
2 , we have that

SEX

(
t
′
, t

′′
)
= 1.

Consequently, SEX
(
t
′
, t

′′
)
= 1, SEY

(
t
′
, t

′′
)

= 1 or SEX
(
t
′
, t

′′
)
= 1, SEZ

(
t
′
, t

′′
)
= 1.

Suppose that SEX
(
t
′
, t

′′
)
= 1, SEY

(
t
′
, t

′′
)
=

1.
We obtain,

SEX

(
t
′′
, t

′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEY

(
t
′′
, t

′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEZ

(
t
′′
, t

′′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

.

This contradicts the fact that r
′

violates X θ→→V

Y .
Suppose that SEX

(
t
′
, t

′′
)
= 1, SEZ

(
t
′
, t

′′
)
=

1.
We obtain,

SEX

(
t
′
, t

′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEY

(
t
′
, t

′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

,

SEZ

(
t
′
, t

′′
)
≥min

{
θ, SEX

(
t
′
, t

′′
)}

.

This contradicts the fact that r
′

violates X θ→→V

Y .
We conclude,

ir′ ,1 ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC))) ≤
1

2
.
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Thus,

ir′ ,1 ((∧A∈KA)⇒ (∧B∈LB)) >
1

2
,

ir′ ,1 ((∧A∈KA)⇒ ((∧B∈LB) ∨ (∧C∈MC))) >
1

2

for all (∧A∈KA)⇒ (∧B∈LB) ∈ C ′
, (∧A∈KA)⇒

((∧B∈LB) ∨ (∧C∈MC)) ∈ C
′
, where M =

{A1, A2, ..., An} \ (K ∪ L), and

ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2

resp.

ir′ ,1 ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC))) ≤
1

2

This contradicts the fact that (b) holds true.
Hence, (a) holds true.
This completes the proof.

6 Applications
Example 1. Let R (A,B, ...,K) be a relation scheme
on domains U1, U2,... U11, where A is an attribute on
the universe of discourse U1, B is an attribute on the
universe of discourse U2,..., K is an attribute on the
universe of discourse U11. Suppose that the following
vague functional and vague multivalued dependencies
on {A,B, ...,K} hold true:

{A,B,C,D} θ1→→V {B,D,E, F, I, J} ,

{A,B,C,D} θ2→→V {C,D, F,G,H, I} ,

{B,C} θ3→V {E,K} ,

{B,D,E, J} θ4→V {G,E} .

Then, the vague multivalued dependency

{A,B,C,D} θ→→V {E,G,K}

on {A,B, ...,K} holds also true, where θ =
min {θ1, θ2, θ3, θ4}.

Proof. I We may apply the inference rules VF1-VF7,
VM1-VM10.

We obtain:

1) {A,B,C,D} θ1→→V {B,D,E, F, I, J} (in-
put)

2) {A,B,C,D} θ2→→V {C,D, F,G,H, I} (in-
put)

3) {A,B,C,D} min{θ1,θ2}→→ V {D,F, I} (from 1),
2) and VM9)

4) {A,B,C,D} min{θ1,θ2}→→ V {E,G,H, J,K}
(from 3) and VM2)

5) {B,C} θ3→V {E,K} (input)

6) {A,B,C,D} min{θ1,θ2,θ3}→ V {E,K} (from
4), 5), VM6, and the fact that {B,C}
and {E,G,H, J,K} are disjoint, {E,K} ⊂
{E,G,H, J,K})

7) {A,B,C,D} min{θ1,θ2}→→ V {B,E, J} (from
1), 2) and VM9)

8) {B,D,E, J} θ4→V {G,E} (input)

9) {B,D,E, J} θ4→→V {G,E} (from 8) and
VM5)

10) {A,B,C,D} min{θ1,θ2,θ4}→→ V G (from 7), 9),
VM8, where W = {D})

11) {A,B,C,D} min{θ1,θ2,θ3}→→ V {E,K} (from
6) and VM5)

12) {A,B,C,D} θ→→V {E,G,K} (from 10),
11) and VM7)

Proof. II We may apply Theorem 4.
Note that the condition (a) of Theorem 4 actually

states that the dependency

{A,B,C,D} θ→→V {E,G,K}

follows from the set

C =
{
{A,B,C,D} θ1→→V {B,D,E, F, I, J} ,

{A,B,C,D} θ2→→V {C,D, F,G,H, I} ,

{B,C} θ3→V {E,K} ,

{B,D,E, J} θ4→V {G,E}
}
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of vague dependencies.
Since the conditions (a) and (b) of Theorem 4 are

equivalent, it is enough to prove that the condition (b)
is satisfied.

As it is usual, we apply the resolution principle.
Suppose that

ir,β (K1)

=ir,β

(
(A ∧B ∧ C ∧D)⇒

((B ∧D ∧ E ∧ F ∧ I ∧ J) ∨ (G ∧H ∧K))
)

>
1

2
,

ir,β (K2)

=ir,β

(
(A ∧B ∧ C ∧D)⇒

((C ∧D ∧ F ∧G ∧H ∧ I) ∨ (E ∧ J ∧K))
)

>
1

2
,

ir,β (K3)

=ir,β

(
(B ∧ C)⇒

((E ∧K) ∨ (A ∧D ∧ F ∧G ∧H ∧ I ∧ J))
)

>
1

2
,

ir,β (K4)

=ir,β

(
(B ∧D ∧ E ∧ J)⇒

((G ∧ E) ∨ (A ∧ C ∧ F ∧H ∧ I ∧K))
)

>
1

2
,

where r is a two-element vague relation instance on
R (A,B, ...,K), and β ∈ [0, 1] is a number.

Our goal is to prove that

ir,β

(
c
′
)

=ir,β

(
(A ∧B ∧ C ∧D)⇒

((E ∧G ∧K) ∨ (F ∧H ∧ I ∧ J))
)

>
1

2
.

First, we find the conjunctive normal forms of the
formulas K1, K2, K3, K4 and ¬c′ (this is in line with
the resolution principle).

We obtain,

K1 ≡ (¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E ∨G)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ F ∨G)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨G ∨ I)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨G ∨ J)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E ∨H)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ F ∨H)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨H ∨ I)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨H ∨ J)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E ∨K)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ F ∨K)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ I ∨K)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ J ∨K) ,

K2 ≡ (¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E ∨ F )∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E ∨G)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E ∨H)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E ∨ I)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ F ∨ J)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨G ∨ J)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨H ∨ J)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ I ∨ J)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ F ∨K)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨G ∨K)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨H ∨K)∧
(¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ I ∨K) ,

K3 ≡
(A ∨ ¬B ∨ ¬C ∨ E) ∧ (¬B ∨ ¬C ∨D ∨ E)∧
(¬B ∨ ¬C ∨ E ∨ F ) ∧ (¬B ∨ ¬C ∨ E ∨G)∧
(¬B ∨ ¬C ∨ E ∨H) ∧ (¬B ∨ ¬C ∨ E ∨ I)∧
(¬B ∨ ¬C ∨ E ∨ J) ∧ (A ∨ ¬B ∨ ¬C ∨K)∧
(¬B ∨ ¬C ∨D ∨K) ∧ (¬B ∨ ¬C ∨ F ∨K)∧
(¬B ∨ ¬C ∨G ∨K) ∧ (¬B ∨ ¬C ∨H ∨K)∧
(¬B ∨ ¬C ∨ I ∨K) ∧ (¬B ∨ ¬C ∨ J ∨K) ,

K4 ≡ (A ∨ ¬B ∨ ¬D ∨ ¬E ∨G ∨ ¬J)∧
(¬B ∨ C ∨ ¬D ∨ ¬E ∨G ∨ ¬J)∧
(¬B ∨ ¬D ∨ ¬E ∨ F ∨G ∨ ¬J)∧
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(¬B ∨ ¬D ∨ ¬F ∨G ∨H ∨ ¬J)∧
(¬B ∨ ¬D ∨ ¬J ∨G ∨ I ∨ ¬J)∧
(¬B ∨ ¬D ∨ ¬E ∨G ∨ ¬J ∨K) ,

¬c′ ≡A ∧B ∧ C ∧D ∧ (¬E ∨ ¬G ∨ ¬K)∧
(¬F ∨ ¬H ∨ ¬I ∨ ¬J) .

Let M be the of all conjunctive terms that appear
within conjunctive normal forms of the formulas K1,
K2, K3, K4 and ¬c′ .

Applying the resolution principle to the elements
of the set M , we obtain

1) ¬ A ∨ ¬ B ∨ ¬ C ∨ ¬ D ∨ G ∨K (input)

2) A (input)

3) B (input)

4) C (input)

5) D (input)

6) ¬ B ∨ ¬ C ∨ ¬D ∨ G ∨K (resolvent from
1) and 2))

7) ¬ C ∨ ¬D ∨ G ∨K (resolvent from 6) and
3))

8) ¬ D ∨ G ∨K (resolvent from 7) and 4))

9) G ∨K (resolvent from 8) and 5))

10) ¬ E ∨ ¬ G ∨ ¬K (input)

11) ¬ E (resolvent from 10) and 9))

12) ¬ A ∨ ¬ B ∨ ¬ C ∨ ¬D ∨ E ∨K (input)

13) ¬ B ∨ ¬ C ∨ ¬ D ∨ E ∨ K (resolvent
from 12) and 2))

14) ¬ C ∨ ¬ D ∨ E ∨ K (resolvent from 13)
and 3))

15) ¬ D ∨ E ∨K (resolvent from 14) and 4))

16) E ∨K (resolvent from 15) and 5))

17) K (resolvent from 16) and 11))

18) ¬ A ∨ ¬ B ∨ ¬ C ∨ ¬ D ∨ E ∨ G (input)

19) ¬B ∨ ¬C ∨ ¬D ∨E ∨G (resolvent from
18) and 2))

20) ¬ C ∨ ¬ D ∨ E ∨ G (resolvent from 19)
and 3))

21) ¬ D ∨ E ∨ G (resolvent from 20) and 4))

22) E ∨ G (resolvent from 21) and 5))

23) ¬K (resolvent from 22) and 10))

Resolving 23) and 17), we obtain that the inequal-
ities: ir,β (K1) >

1
2 , ir,β (K2) >

1
2 , ir,β (K3) >

1
2 ,

ir,β (K4) >
1
2 and ir,β

(
c
′
)
≤ 1

2 cannot be satisfied
at the same time.

Since, ir,β (K1) >
1
2 , ir,β (K2) >

1
2 , ir,β (K3) >

1
2 and ir,β (K4) >

1
2 , it follows that ir,β

(
c
′
)
> 1

2 .
Thus, the condition (b) of Theorem 4 is satisfied.
Consequently, the condition (a) of Theorem 4 is

satisfied.
Therefore,

{A,B,C,D} θ→→V {E,G,K}

follows.

For analogous results in the case of fuzzy func-
tional and fuzzy multivalued dependencies, we refer
to [10], [11], [15], [16].
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